Variable Transformations ======================== It is useful to be able to convert derivative operators between the various sets of composition variables. In the relations below, we omit the "bars" and simply write :math:`n_n,n_p` for :math:`\bar{n}_n,\bar{n}_p`. In other words, all of the nucleon densities below are presumed to include nucleons both inside and outside of nuclei. Converting between (nn,np) and (nB,ne) -------------------------------------- Since :math:`n_p=n_e` and :math:`n_n=n_B-n_e`, .. math:: \left(\frac{\partial }{\partial n_B}\right)_{n_e} &=& \left(\frac{\partial n_n}{\partial n_B}\right)_{n_e} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial n_B}\right)_{n_e} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = \left(\frac{\partial }{\partial n_n}\right)_{n_p} \nonumber \\ \left(\frac{\partial }{\partial n_e}\right)_{n_B} &=& \left(\frac{\partial n_n}{\partial n_e}\right)_{n_B} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial n_e}\right)_{n_B} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = \left(\frac{\partial }{\partial n_p}\right)_{n_n} - \left(\frac{\partial }{\partial n_n}\right)_{n_p} For second derivatives .. math:: \left(\frac{\partial^2 }{\partial n_B^2}\right)_{n_e} &=& \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p} \nonumber \\ \left(\frac{\partial^2 }{\partial n_e\partial n_B}\right) &=& \left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) - \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p} \nonumber \\ \left(\frac{\partial^2 }{\partial n_e^2}\right)_{n_B} &=& \left(\frac{\partial^2 }{\partial n_p^2}\right)_{n_n} - 2\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) + \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p} Converting between (nn,np) and (nB,Ye) -------------------------------------- Since :math:`n_p=n_B Y_e` and :math:`n_n=n_B(1-Y_e)`, .. math:: \left(\frac{\partial }{\partial n_B}\right)_{Y_e} &=& \left(\frac{\partial n_n}{\partial n_B}\right)_{Y_e} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial n_B}\right)_{Y_e} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = (1-Y_e) \left(\frac{\partial }{\partial n_n}\right)_{n_p} + Y_e \left(\frac{\partial }{\partial n_p}\right)_{n_n} \nonumber \\ \left(\frac{\partial }{\partial Y_e}\right)_{n_B} &=& \left(\frac{\partial n_n}{\partial Y_e}\right)_{n_B} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial Y_e}\right)_{n_B} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = n_B \left[\left(\frac{\partial }{\partial n_p}\right)_{n_n} - \left(\frac{\partial }{\partial n_n}\right)_{n_p} \right] The inverse transformation is: .. math:: \left(\frac{\partial }{\partial n_n}\right)_{n_p} = \left(\frac{\partial }{\partial n_B}\right)_{Y_e} - \frac{Y_e}{n_B} \left(\frac{\partial }{\partial Y_e}\right)_{n_B} \nonumber \\ \left(\frac{\partial }{\partial n_p}\right)_{n_n} = \left(\frac{\partial }{\partial n_B}\right)_{Y_e} + \frac{(1-Y_e)}{n_B} \left(\frac{\partial }{\partial Y_e}\right)_{n_B} This transformation is used in ``stability()`` in ``eos_nuclei.cpp``. There is a Maxwell relation: .. math:: \frac{\partial f^2}{\partial n_n \partial n_p} = \frac{\partial f^2}{\partial n_p \partial n_n} which implies .. math:: \left(\frac{\partial \mu_n}{\partial n_p}\right) = \left(\frac{\partial \mu_p}{\partial n_n}\right) \left(\frac{\partial \mu_e}{\partial n_n}\right) or .. math:: \left(\frac{\partial \mu_p}{\partial n_B}\right)_{Y_e} - \frac{Y_e}{n_B} \left(\frac{\partial \mu_p}{\partial Y_e}\right)_{n_B} = \left(\frac{\partial \mu_n}{\partial n_B}\right)_{Y_e} + \frac{(1-Y_e)}{n_B} \left(\frac{\partial \mu_n}{\partial Y_e}\right)_{n_B} thus .. math:: \left(\frac{\partial \mu_p}{\partial n_B}\right)_{Y_e} = \frac{Y_e}{n_B} \left(\frac{\partial \mu_p}{\partial Y_e}\right)_{n_B} + \left(\frac{\partial \mu_n}{\partial n_B}\right)_{Y_e} + \frac{(1-Y_e)}{n_B} \left(\frac{\partial \mu_n}{\partial Y_e}\right)_{n_B} This equality is also used in ``stability()`` in ``eos_nuclei.cpp``. Converting between (nn,np) and (nB,Ye) with muons ------------------------------------------------- When muons are included, the expressions change, since :math:`n_p = n_e + n_{\mu}(n_e)` and :math:`n_n = n_B - n_e - n_{\mu}(n_e)`, .. math:: \left(\frac{\partial }{\partial n_B}\right)_{n_e} &=& \left(\frac{\partial n_n}{\partial n_B}\right)_{n_e} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial n_B}\right)_{n_e} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = \left(\frac{\partial }{\partial n_n}\right)_{n_p} \nonumber \\ \left(\frac{\partial }{\partial n_e}\right)_{n_B} &=& \left(\frac{\partial n_n}{\partial n_e}\right)_{n_B} \left(\frac{\partial }{\partial n_n}\right)_{n_p} + \left(\frac{\partial n_p}{\partial n_e}\right)_{n_B} \left(\frac{\partial }{\partial n_p}\right)_{n_n} = (1+\chi) \left[ \left(\frac{\partial }{\partial n_p}\right)_{n_n} - \left(\frac{\partial }{\partial n_n}\right)_{n_p}\right] where .. math:: \chi = \frac{\partial n_{\mu}}{\partial n_e} = \frac{\partial n_{\mu}}{\partial {\mu}_{\mu}} \frac{\partial {\mu}_{\mu}}{\partial {\mu}_e} \frac{\partial {\mu}_{e}}{\partial n_e} + \frac{\partial {\mu}_{e}}{\partial n_e} = \frac{\partial n_{\mu}}{\partial {\mu}_{\mu}} \left(\frac{\partial n_e}{\partial {\mu}_{e}}\right)^{-1} For second derivatives .. math:: \left(\frac{\partial^2 }{\partial n_B^2}\right)_{n_e} &=& \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p} \nonumber \\ \left(\frac{\partial^2 }{\partial n_e\partial n_B}\right) &=& (1+\chi)\left[\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) - \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}\right] \nonumber \\ \left(\frac{\partial^2 }{\partial n_e^2}\right)_{n_B} &=& \left(1+\chi\right)^2 \left[ \left(\frac{\partial^2 }{\partial n_p^2}\right)_{n_n} - 2\left(\frac{\partial^2 }{\partial n_p \partial n_n}\right) + \left(\frac{\partial^2 }{\partial n_n^2}\right)_{n_p}\right]