Moment of Inertia in the Slowly-Rotating Approximation ====================================================== :ref:`O2scl ` The differential equations for slow rigid rotation are solved by :ref:`tov_solve ` if :cpp:var:`o2scl::tov_solve::ang_vel` is set to ``true``. In the case of slow rigid rotation with angular velocity :math:`\Omega`, the moment of inertia is .. math:: I = \frac{8 \pi}{3} \int_0^R dr~r^4\left(\varepsilon+P\right) \left(\frac{\bar{\omega}}{\Omega}\right) e^{\Lambda-\Phi} = \frac{8 \pi}{3} \int_0^R dr~r^4\left(\varepsilon+P\right) \left(\frac{\bar{\omega}}{\Omega}\right) \left(1-\frac{2 G m}{r}\right)^{-1/2} e^{-\Phi} where :math:`\omega(r)` is the rotation rate of the inertial frame, :math:`\Omega` is the angular velocity in the fluid frame, and :math:`\bar{\omega}(r) \equiv \Omega - \omega(r)` is the angular velocity of a fluid element at infinity. The function :math:`\bar{\omega}(r)` is the solution of .. math:: \frac{d}{dr} \left( r^4 j \frac{d \bar{\omega}}{dr}\right) + 4 r^3 \frac{d j}{dr} \bar{\omega} = 0 where the function :math:`j(r)` is defined by .. math:: j = e^{-\Lambda-\Phi} = \left( 1-\frac{2 G m}{r} \right)^{1/2} e^{-\Phi} \, . Note that :math:`j(r=R) = 1`. The boundary conditions for :math:`\bar{\omega}` are :math:`d \bar{\omega}/dr = 0` at :math:`r=0` and .. math:: \bar{\omega}(R) = \Omega - \left(\frac{R}{3}\right) \left(\frac{d \bar{\omega}}{dr}\right)_{r=R} \, . One can use the TOV equation to rewrite the moment of inertia as .. math:: I= \left(\frac{d \bar{\omega}}{dr}\right)_{r=R} \frac{R^4}{6 G \Omega} \, . The star's angular momentum is just :math:`J = I \Omega`.